

Claudia Cecchi
University of Perugia and INFN
On behalf of the Belle II Collaboration

NuFact 2015, Rio de Janeiro, Brasil

Outline:

- -Introduction
- -Search for LFV at BELLE
- -Perspectives for BelleII experiment
- -Conclusions

Introduction

- -LFV is established but only in neutral neutrino, what about charged partners?
- Lepton Flavor Violation (LFV) in charged leptons has negligible probability in the Standard Model (SM) even including neutrino oscillation
- LFV is a clear signature of New Physics Many extensions of the SM predict LFV decays, B.F. can be enhanced as high as current experimental sensistivity $O(10^{-8})$
- most powerful searches in muons and τ 's: taus has a "per particle" advantage GIM suppression is smaller than in muons; but high statistics in muon beams.
- Tau is the heaviest lepton:
- expect strong coupling to NP
- many possible LFV decays -> Tau's are ideal probe of NP

Tau Lepton Flavor Violation

$$Br(\tau \to \mu \gamma)_{SM} \propto \left(\frac{\delta m_{\nu}^{2}}{m_{W}^{2}}\right)^{2} < 10^{-40}$$
(X.Pham, EPJC8 513(1999)) $^{\tau} = V_{\tau} \times V_{\mu} \text{ (or e)}$

Ratio of Tau LFV decay BF: discrimination of NP models JHEP 0705, 013(2007), PLB54 252 (2002)

	SUSY+GUT (SUSY+Seesaw)	Higgs mediated	Little Higgs	non-universal Z' boson
$\left(\frac{\tau \to \mu\mu\mu}{\tau \to \mu\gamma}\right)$	~2 × 10 ⁻³	0.06~0.1	0.4~2.3	~16
$\left(\frac{\tau \to \mu e e}{\tau \to \mu \gamma}\right)$	~1 × 10 ⁻²	~1 × 10 ⁻²	0.3~1.6	~16
Br(τ→μγ) @Max	<10 ⁻⁷	<10 ⁻¹⁰ C. Cecchi	<10 ⁻¹⁰	<10 ⁻⁹

Analysis strategy

Tag side: one prong decay + neutrino B.R. 85%

Signal side: full reconstruction

Extract signal from M_T vs ΔE

$$M_{\tau} = \sqrt{E_{\mu\mu\mu}^2 - p_{\mu\mu\mu}^2}$$
$$\Delta E = E_{\mu\mu\mu}^{CM} - E_{beam}^{CM}$$

- Blind analysis
- Background estimation from data and MC in the sidebands

Background contamination

INFN AE (GeV) AE (GeV) (b) τ →μ μ μ AE (GeV) (c) τ →e μ μ (a) τ →e e e e 0.2 $e^-e^+e^-$ 1.7 $m_{eee} (GeV/c^2)$ $m_{\mu\mu\mu}$ (GeV/c²) m_{euu} (GeV/c²) AE (GeV) AE (GeV) AE (GeV) (d) $\tau \rightarrow \mu e^+e^-$ (f) $\tau \rightarrow \mu^+ e e^ \mu^-e^+\mu^$ u⁻e⁺e⁻ $m_{e\mu\mu} (GeV/c^2)$ m_{uee} (GeV/c²)

$T\rightarrow 3$ leptons

BELLE data set: 782 fb⁻¹ No events have been found in the signal region

Very good lepton ID → almost no bckgnd Expected bckgnd events: 0.01 - 0.21

Br < (1.5-2.7) x10⁻⁸ @ 90% C.L. (Physalett. B687, 139 (2010)).

Mode	ε (%)	N _{BG} EXP	σ _{svst} (%)	UL (x10 ⁻⁸)
e ⁻ e ⁺ e ⁻	6.0	0.21±0.15	9.8	2.7
$\mu^-\mu^+\mu^-$	7.6	0.13±0.06	7.4	2.1
$\text{e}^-\mu^+\mu^-$	6.1	0.10±0.04	9.5	2.7
$\mu^- e^+ e^-$	9.3	0.04 ± 0.04	7.8	1.8
$\mu^- e^+ \mu^-$	10.1	0.02 ± 0.02	7.6	1.7
$\text{e}^-\mu^+\text{e}^-$	11.5	0.01 ± 0.01	7.7	1.5

$T \rightarrow lhh'$

BELLE data set: 854 fb⁻¹

14 decay modes h, h' = π^{+-} , K⁺⁻ T⁻ \rightarrow l⁻h⁺h'⁻ (8 modes) T⁻ \rightarrow l⁺h⁻h'⁻ (6 modes)

$T \rightarrow lhh'$

Mode	ε (%)	$N_{ m BG}$	$N_{ m obs}$	$\mathcal{B}(10^{-8})$	_	
$ au^- o \mu^- \pi^+ \pi^-$	5.83	0.63 ± 0.23	0	2.1	-	
$ au^- ightarrow \mu^+ \pi^- \pi^-$	6.55	0.33 ± 0.16	1	3.9		
$ au^- ightarrow e^- \pi^+ \pi^-$	5.45	0.55 ± 0.23	0	2.3		
$ au^- ightarrow e^+ \pi^- \pi^-$	6.56	0.37 ± 0.18	0	2.0		Lauragh III
$\tau^- \rightarrow \mu^- K^+ K^-$	2.85	0.51 ± 0.18	0	4.4		Lowest U.L.
$ au^- ightarrow \mu^+ K^- K^-$	2.98	0.25 ± 0.13	0	4.7		
$ au^- ightarrow e^- K^+ K^-$	4.29	0.17 ± 0.10	0	3.4		
$\tau^- \rightarrow e^+ K^- K^-$	4.64	0.06 ± 0.06	0	3.3		
$\tau^- \rightarrow \mu^- \pi^+ K^-$	2.72	0.72 ± 0.27	1	8.6		Highest U.L.
$\tau^- \rightarrow e^- \pi^+ K^-$	3.97	0.18 ± 0.13	0	3.7		ingiliati dia.
$ au^- ightarrow \mu^- K^+ \pi^-$	2.62	0.64 ± 0.23	0	4.5		
$ au^- ightarrow e^- K^+ \pi^-$	4.07	0.55 ± 0.31	0	3.1		
$ au^- ightarrow \mu^+ K^- \pi^-$	2.55	0.56 ± 0.21	0	4.8		
$ au^- ightarrow e^+ K^- \pi^-$	4.00	0.46 ± 0.21	0	3.2	_	

1 event in the signal region in $\mu^+\pi^-\pi^-$ and in $\mu^-\pi^+K^-$ expected bckgnd events 0.06 - 0.72

Br < (2.0-8.6) x10⁻⁸ @ 90% C.L. (Phys. Lett. B719, 346 (2013))

Improvement w.r.t. to previous limit by a factor of about 1.8

$I \rightarrow \Lambda h, \overline{\Lambda} h (h=\pi,K)$

BELLE data set: 904 fb⁻¹ 4 decay modes

 $h = \pi$, K $T^{-} \rightarrow \Lambda h^{-}$ (B-L conserving) $T^{-} \rightarrow \Lambda h^{-}$ (B-L violating)

K_s VETO

π mis-ID π	ı - p		
e- \ 1	20 -	ф	
$ au K_S^0$	π 15>		Data τ'→Λπ' ττ MC continuum
ν_{τ}	10 -	, , ,	
$ u_{\tau} = e^{+} $	╴╸╸ ┤ ┃┃ ╸		
Ψ ^ν τ	0.48	0.5	0.52
		M _{xx} (0	3eV/c ²)

$\tau^- \rightarrow \overline{\Lambda} \pi^-, K^-$	$\tau^- \rightarrow \Lambda \pi^-$
$\overline{p}\pi^+$	рπ

	τ	<u></u>	π-K-		τ-	٨	π-K-
В	0	-1	0	В	0	1	0
L	1	0	0	L	1	0	0
B-L	-1	-1	0	B-L	1	1	0

(B-L) conserving

(B-L) violating

PROTON VETO tag side

$T \rightarrow \Lambda h, \bar{\Lambda} h (h=\pi, K)$

No events have been found in the signal region

Expected bckgnd events: 0.21 - 0.42

Mode	ε (%)	$N_{ m BG}$	$N_{\rm obs}$	$\mathcal{B}(10^{-8})$
$\tau^- \rightarrow \Lambda \pi^-$	4.80	0.21 ± 0.15	0	2.8
$\tau^- \rightarrow \Lambda \pi^-$	4.39	0.31 ± 0.18	0	3.0
$\tau^- \rightarrow \Lambda K^-$	4.11	0.31 ± 0.14	0	3.1
$ au^- o \Lambda K^-$	3.16	0.42 ± 0.19	0	4.2

U.L @ 90% C.L.

Br(
$$\tau \to \overline{\Lambda} \pi^{-}$$
) < 2.8×10⁻⁸
Br($\tau \to \overline{\Lambda} K^{-}$) < 3.1×10⁻⁸
Br($\tau \to \Lambda \pi^{-}$) < 3.0×10⁻⁸
Br($\tau \to \Lambda K^{-}$) < 4.2×10⁻⁸

B-L cons.

B-L viol.

BELLE data set: 535 fb-1

Main backgrounds:

 $T \rightarrow \mu\nu\nu + ISR$

 $T \rightarrow \pi v$ (mis identification of π with μ)

94 events in the 5 σ signal region Expected backgnd: 88.4 ± 7.4

0.1

Br < 4.5x10⁻⁸ @ 90% C.L.

7.8x10⁻⁸ expected

(Phys. Lett. B66, 16 (2008))

BaBar: Data: $482M \tau$ pairs (including Y(2,3S) data)

Decay modes	20	signal ellipse	ε UL $(\times 10^{-8})$			
	obs	exp	(%)	obs	exp	
$\tau^{\pm} \to \mu^{\pm} \gamma$	2	3.6 ± 0.7	6.1±0.5	4.4	8.2	

Summary of recent tau LFV search

48 decay modes investigated - $100 \times \text{more}$ sensitivity w.r.t. CLEO results

LHCb2/results on 3 leptons comparable to B-factories

Future perspectives: Belle II Belle II

NANO-BEAM scheme:

- Smaller β_v^*
- Increase beam current
- Increase ξ_{v}

Beam current Lorentz factor l e± 2erClassical electron radius C. Cecclaieam size ratio@IP

1 ~ 2 % (flat beam)

Lumi. reduction factor (crossing angle)& Tune shift reduction factor (hour glass effect) $0.8 \sim 1$ (short bunch)

Vertical beta function@IP 14

Detector upgrade

Critical issues @8x10³⁵ s⁻¹cm⁻²

- -Higher background (x10-20)
 - radiative Bhabha dominate
 - radiation damage, occupancy
 - · pile-up in ECL
- -Higher event rates (x10)
 - higher trigger rates (0.5 → 3KHz)
 - · DAQ
- -IMPROVEMENTS
 - hermeticity $(k\pi-ID \mu-ID endcap)$
 - IP and secondary vertex resolution
 - Ks and π^0 efficiency
 - K/π separation
 - µ-ID and PID endcaps

TDR arXiv: 10110352

Schedule

- ✓ SuperKEKB construction is finished
- ✓ startup for Phase 1 are in progress.

SuperKEKB luminosity projection

50 ab⁻¹ in 2023-2024 O (10¹¹) Tau sample Golden modes are different for the two experiments and also cross sections!!!

Ingredients for the future

Muon efficiency & pion fake rate vs momentum

Perspectives for LFV

 $\tau \rightarrow \mu \gamma$ (no bckgnd free) expected limite O(10-9)

 $\tau \rightarrow \mu\mu\mu$ (bckgnd free) expected limit O(10⁻¹⁰)

The full range of τ LFV is only accessible at a Super B factory

8/12/15 C. Cecchi 19

Tau lepton is a good probe for NP searches like LFV B factories produced a huge data sample $O(10^9)$ tau pairs

BELLE:

- 48 LFV decay modes have been investigated 100x sensitive results w.r.t. CLEO
- 90% C.L. Upper Limits have been set in O(10-8)
- $\tau \rightarrow \mu \gamma / e \gamma$ will be updated with the full data set

BELLEII:

- machine upgrade is finished and detector upgrade is ongoing smoothly
 detector improvement will play a key role in background elimination and reduction of systematic effects
- start of full physics 2018, reach 50 ab⁻¹ by 2023-2024
- LFV will be probed up to $O(10^{-9} 10^{-10})$

LHCb can investigate some modes; sensitivity comparable to B factories

THANK YOU FOR THE ATTENTION!

Schedule

BEAST phase 1 2016

BEAST/SuperKEKB & cosmics

BEAST phase 2 Mid 2017- Early 2018

BEAST with Partial Belle II

Full physics

Oct 2018
Full detector